. C A ] 3 0 N ov 2 00 1 Integral Transform and Segal - Bargmann Representation associated to q - Charlier Polynomials ∗

نویسنده

  • Nobuhiro ASAI
چکیده

Let μ (q) p be the q-deformed Poisson measure in the sense of SaitohYoshida [24] and νp be the measure given by Equation (3.6). In this short paper, we introduce the q-deformed analogue of the Segal-Bargmann transform associated with μ (q) p . We prove that our Segal-Bargmann transform is a unitary map of L(μ (q) p ) onto the q-deformed Hardy spaceH (νq). Moreover, we give the Segal-Bargmann representation of the multiplication operator by x in L(μ (q) p ), which is a linear combination of the qcreation, q-annihilation, q-number, and scalar operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. C A ] 3 S ep 2 00 1 Integral Transform and Segal - Bargmann Representation associated to q - Charlier Polynomials ∗

Let μ (q) p be the q-deformed Poisson measure in the sense of SaitohYoshida [24] and νp be the measure given by Equation (3.6). In this short paper, we introduce the q-deformed analogue of the Segal-Bargmann transform associated with μ (q) p . We prove that our Segal-Bargmann transform is a unitary map of L(μ (q) p ) onto the Hardy space H (νq). Moreover, we give the Segal-Bargmann representati...

متن کامل

Integral Transform and Segal-Bargmann Representation associated to q-Charlier Polynomials

Let μ (q) p be the q-deformed Poisson measure in the sense of SaitohYoshida [24] and νp be the measure given by Equation (3.6). In this short paper, we introduce the q-deformed analogue of the Segal-Bargmann transform associated with μ (q) p . We prove that our Segal-Bargmann transform is a unitary map of L(μ (q) p ) onto the Hardy space H (νq). Moreover, we give the Segal-Bargmann representati...

متن کامل

ar X iv : q ua nt - p h / 04 09 11 8 v 1 17 S ep 2 00 4 THE SEGAL – BARGMANN TRANSFORM FOR NONCOMPACT SYMMETRIC SPACES OF THE COMPLEX TYPE

We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal–Bargmann transform is a unitary map onto a certain L space of meromorphic functions. For general functions, we give an inversion formula for the Segal–Bargmann transform, involving integration against an “...

متن کامل

Branching Coefficients of Holomorphic Representations and Segal-bargmann Transform

Let D = G/K be a complex bounded symmetric domain of tube type in a Jordan algebra VC, and let D = H/L = D∩V be its real form in a Jordan algebra V ⊂ VC. The analytic continuation of the holomorphic discrete series on D forms a family of interesting representations of G. We consider the restriction on D of the scalar holomorphic representations of G, as a representation of H . The unitary part ...

متن کامل

. C A ] 9 J ul 1 99 3 The q - Harmonic Oscillator and an Analog of the Charlier polynomials

A model of a q-harmonic oscillator based on q-Charlier poly-nomials of Al-Salam and Carlitz is discussed. Simple explicit realization of q-creation and q-annihilation operators, q-coherent states and an ana-log of the Fourier transformation are found. A connection of the kernel of this transform with biorthogonal rational functions is observed. Models of q-harmonic oscillators are being develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001